Capítulo 37. Procesos de transporte en las plantas

Una planta necesita mucha más agua que un animal de peso comparable. Esto se debe a que la casi totalidad del agua que entra en las raíces de una planta en crecimiento es liberada al aire como vapor de agua y sólo una pequeña proporción es realmente utilizada por las células vegetales. La pérdida de vapor de agua por las plantas se denomina transpiración. Como consecuencia de la transpiración, las plantas requieren de grandes cantidades de agua. Junto con la corriente de transpiración son incorporados elementos esenciales de origen mineral desde el suelo al interior de las células de las raíces.

Además de agua y minerales, las células de una planta también necesitan esqueletos carbonados, los cuales constituyen su fuente de energía. El movimiento de los compuestos orgánicos desde las partes fotosintéticas de las plantas es conocido como translocación.

Los elementos minerales que necesitan las plantas son absorbidos por las raíces de la solución que las rodea y son transportados desde éstas hacia el vástago en la corriente transpiratoria. Aunque la disponibilidad de minerales depende principalmente de la naturaleza del suelo circundante, las actividades de los hongos y bacterias simbióticos desempeñan también un papel fundamental.

Movimiento de agua y minerales

La pérdida de agua por parte de las plantas en forma de vapor se conoce como transpiración y es una consecuencia de la apertura de los estomas. Esta apertura es necesaria pues a través de los estomas ingresa el dióxido de carbono que se utiliza en la fotosíntesis.

A medida que el dióxido de carbono, esencial para la fotosíntesis, penetra en las hojas por los estomas se pierde vapor de agua a través de éstos. Aunque esta pérdida de agua plantea problemas serios para las plantas, suministra la fuerza motriz mediante la que se absorbe agua por las raíces. Además provee un mecanismo que enfría las hojas. La temperatura de una hoja puede ser hasta 10 ó 15 º C inferior a la del aire circundante. Esto ocurre porque el agua, al evaporarse, lleva consigo calor

Intercambio de agua y gases por los estomas.


El agua entra en la planta desde el suelo por las raíces. El movimiento del agua hacia las células de la raíz sólo es posible cuando el potencial hídrico en el suelo es mayor al potencial hídrico en las raíces.

Mediciones efectuadas en árboles de fresno muestran que un aumento en la transpiración es seguido por un aumento en la absorción de agua.


Los datos del gráfico anterior sugieren que la pérdida de agua genera fuerzas que permiten su absorción.

Los procesos que conducen a la entrada de agua a las células de la raíz son capaces por sí solos -y bajo ciertas condiciones- de generar una presión positiva que crea una columna de agua. Tal presión, conocida como presión de raíz es, sin embargo, sólo suficiente para que el agua ascienda un corto trecho en el tallo. El agua viaja a través del cuerpo vegetal en las células conductoras del xilema (vasos y traqueidas).

De acuerdo con la teoría de cohesión-tensión, el agua se mueve en las traqueidas y vasos bajo presión negativa (presión menor a la atmosférica, también denominada tensión). Dado que las molé-culas de agua se mantienen juntas (cohesión), hay una columna continua de moléculas de agua que es arrastrada por tracción, desde la solución que se encuentra en el suelo al interior de la raíz, molécula por molécula, debido a la evaporación del agua en la parte superior.

La difusión de los gases, incluyendo al vapor de agua, hacia el interior y exterior de la hoja es regulada por los estomas. Los estomas se abren y se cierran por la acción de las células oclusivas, debido a cambios en la turgencia. La turgencia de estas células aumenta o disminuye por el movimiento del agua, que sigue al movimiento de iones potasio hacia adentro o hacia afuera de las células oclusivas. Diversos factores concurren a regular la apertura y cierre de estomas, los cuales incluyen el estrés hídrico, la concentración de dióxido de carbono, la temperatura y la luz.

Mecanismo de movimiento estomático.


Un estoma está bordeado por dos células oclusivas que:

a. abren el estoma cuando están turgentes y
b. lo cierran cuando pierden turgencia. La clave de la apertura de los estomas reside en las microfibrillas de celulosa dispuestas alrededor de las células oclusivas.
c. Cuando el agua entra a las células oclusivas, las células sólo pueden expandirse en dirección longitudinal.
d. Como las dos células están unidas por los extremos, esta expansión longitudinal las obliga a arquearse y al estoma a abrirse.

Los elementos esenciales de origen mineral son incorporados desde el suelo al interior de las células de las raíces a través de la actividad de transportadores específicos, y son transportados al vástago -tras ser volcados al xilema- junto con la corriente de transpiración. Cumplen una variedad de funciones en las plantas, algunas de las cuales no son específicas, como, por ejemplo, los efectos que ejercen sobre el potencial osmótico. Otras funciones son específicas, como la presencia de magnesio en la molécula de clorofila. Algunos minerales son componentes esenciales de los sistemas enzimáticos.

El movimiento de los azucares: translocación

Las células fotosintéticas de una planta, que son típicamente más abundantes en las hojas, capturan la energía de la luz solar con la que elaboran moléculas para su propio uso. Además, estas moléculas orgánicas son la fuente de energía para todas las otras células de la planta.

El proceso por el cual los productos de la fotosíntesis son transportados a otros tejidos de la planta se conoce como translocación.

Este proceso tiene lugar en el floema y sigue un patrón de "fuente a destino". De acuerdo con la hipótesis de la corriente por presión, los azúcares ingresan en los tubos cribosos de la hoja por transporte activo y salen a otras partes del cuerpo de la planta, donde se los necesita para crecer y obtener energía. El agua se mueve hacia el interior y hacia el exterior de los tubos cribosos por ósmosis, siguiendo a las moléculas de azúcar.

Estos procesos crean una diferencia en el potencial hídrico a lo largo del tubo criboso, lo que hace que el agua y los azúcares disueltos en ella se muevan por flujo global a lo largo del tubo criboso.

El modelo de la hipótesis de corriente por presión se puede representar con dos balones A y B. interconectados y permeables al agua, que se colocan en un baño de agua destilada. El balón A contiene una determinada concentración de sacarosa y el balón B, para para hacer el ejemplo más sencillo, originalmente contiene sólo agua. El agua entra al balón A desde el medio que lo rodea. La entrada de agua incrementa la presión hidrostática dentro de este balón y hace que el agua y los solutos en su interior se muevan a lo largo del tubo hasta el segundo balón, el balón B. Si éste estuviera conectado con un tercer balón C, que tuviera una concentración aun menor de sacarosa (del mismo modo en que los miembros de tubo criboso están conectados en serie) la solución pasaría del balón B al C por el mismo proceso, y así indefinidamente a favor del gradiente de concentración de sacarosa.

Las moléculas de azúcar entran por transporte activo a una célula acompañante situada en la fuente, y luego pasan al tubo criboso a través de las muchas conexiones citoplasmáticas de la pared celular común del tubo criboso y de su célula acompañante. Como consecuencia del aumento en la concentración de azúcar, el potencial hídrico disminuye y el agua entra en el tubo criboso. Las moléculas de azúcar dejan el tubo criboso en el destino y la concentración de azúcar en este tubo criboso disminuye. Como resultado, el agua sale del tubo criboso. Dada la secreción activa de moléculas de azúcar hacia el interior del tubo criboso en la fuente y su salida del tubo criboso en el destino, se produce un flujo de la solución de azúcar a lo largo del tubo, entre la fuente y el destino.

Factores que influyen en la nutrición de las plantas

Las características del suelo que afectan la disponibilidad de minerales para las plantas incluyen: la roca madre, el tamaño de las partículas, la cantidad de humus que contiene y el pH. El suelo, la capa más superficial de la corteza terrestre, está compuesto por minerales derivados de las rocas que les han dado origen asociados con material orgánico en diversos grados de descomposición.

Típicamente tiene tres capas: el horizonte A, el horizonte B y el horizonte C. El horizonte A, o capa superior del suelo, es la zona de acumulación máxima de materia orgánica (humus). El horizonte B, o subsuelo, está formado por el producto de la alteración de la roca madre y es pobre en materia orgánica; en este horizonte, se suelen acumular los nutrientes minerales que se han lixiviado del horizonte A. El horizonte C está constituido por rocas sueltas que se extienden hasta el lecho de rocas que se encuentra por debajo de ellas y que constituye el material originario del suelo.

La profundidad y la composición de estas tres capas y en consecuencia la fertilidad del suelo varían considerablemente en ambientes diferentes.

Diagrama de las capas de suelo de tres tipos principales de suelos.

a) Bosque de coníferas. b) Bosques caducos fríos o templados. c) Praderas de gramíneas.

El mantillo material en descomposición que se encuentra sobre la superficie del suelo de los bosques australes y septentrionales de coníferas es ácido y se descompone lentamente; el suelo tiene poca acumulación de humus, es muy ácido y pierde elementos minerales por lixiviación (lavado). En los bosques caducos fríos o templados, la descomposición es algo más rápida, la pérdida de minerales por lixiviación es menos extensa y el suelo es más fértil. Estos suelos han sido usados intensamente para la agricultura, por lo cual es necesario prepararlos añadiendo cal (para disminuir la acidez) y fertilizantes. En las praderas de gramíneas, casi todo el material vegetal que se encuentra sobre la superficie del suelo muere cada año, al igual que muchas de las raíces, y grandes cantidades de materia orgánica regresan, así, constantemente al suelo. Además, las raíces finamente divididas penetran extensamente en el suelo. El resultado es un suelo muy fértil.

La disponibilidad de nutrientes minerales esenciales depende, en gran medida, de las características de la roca madre a partir de la cual se haformado.

El material originario tiene una obvia influencia sobre las características de los suelos, entre ellas, la capacidad de retención del agua y la disponibilidad de nutrientes esenciales. Tales características dependen de la incidencia de otros factores igualmente importantes: el clima (sobre todo las precipitaciones y la temperatura), el relieve, los seres vivos que lo habitan y la edad del suelo. En un ambiente no perturbado, la mayor parte de los nutrientes minerales permanecen dentro del sistema formado por el suelo mismo, las plantas, los microorganismos y la pequeña fauna que el suelo contiene y mantiene.

Las propiedades de los suelos resultan de la interacción entre los factores mencionados. Esta interacción se refleja en el tamaño de los fragmentos producidos por la alteración del material originario. Los fragmentos más pequeños de roca se clasifican como arena, limo y arcilla. La proporción entre estos componentes varía de un suelo a otro. El agua y los iones en solución drenan rápidamente a través de suelos compuestos en su mayor parte por partículas grandes (suelo arenoso). Un suelo compuesto principalmente por partículas pequeñas (arcilla) retiene agua.

El pH del suelo es determinado por los múltiples factores que intervienen en la génesis del suelo. A su vez, el pH del suelo afecta de modo singular su capacidad para retener minerales. Afecta también, en forma marcada y diferente, la solubilidad de ciertos iones.

Las plantas, en general, producen una acidificación del medio, lo que ayuda a degradar las superficies de las rocas y a liberar iones cargados positivamente de estas superficies. Cuando las partes vegetales mueren y se descomponen, se añaden constantemente al humus, cambiando así, no sólo el contenido del suelo, sino también su textura y su capacidad para retener minerales y agua. A su vez, las plantas dependen del contenido mineral del suelo y de su capacidad de retención de agua y nutrientes. Cuando estos factores mejoran, se favorece el crecimiento de las plantas. A menudo cambia también la abundancia relativa de las especies que en él crecen; nuevas especies son capaces de colonizarlo en tanto que otras desaparecen. Esto produce, a su vez, cambios posteriores en el suelo. Así, en condiciones naturales, el suelo -y la disponibilidad de nutrientes y agua para las raíces de las plantas- están cambiando constantemente.

En la nutrición de las plantas, hay dos tipos de relaciones simbióticas que son importantes: las micorrizas y las relaciones en que intervienen bacterias fijadoras de nitrógeno. Las asociaciones entre bacterias fijadoras de nitrógeno, tales como los rizobios, y las raíces de ciertas plantas, particularmente leguminosas, dan como resultado la incorporación del nitrógeno gaseoso de la atmósfera en compuestos orgánicos nitrogenados.

a) Nódulos fijadores de nitrógeno en las raíces de una planta de soja, una leguminosa.b) Microfotografía de barrido de las células del interior del nódulo radical de la alfalfa.


Los nódulos como los que se ven en la figura, son el resultado de una asociación simbiótica entre una bacteria del suelo (Rhizobium) y células de la raíz.



El cuarto Blanco - Biblioteca Web